Corresponding states for electrolyte solutions*

نویسنده

  • Hermann Weingärtner
چکیده

The equilibrium properties of electrolyte solutions over wide ranges of concentration, temperature, and solvent dielectric constant are discussed on a corresponding-states basis. If low-melting salts are used, these properties can be studied up to the pure fused salt. We mainly focus on systems at low reduced temperature, where the depth of the interaction potential is large compared with the thermal energy. Examples are singly charged ions in solvents of low dielectric constant and of highly charged ions in water. The state of the ions is discussed on the basis of thermodynamic, electrical conductance and dielectric constant data. Special attention is given to the transition to the fused salt, where ion clusters have to redissociate to form the dissociated structure of the salt. This transition can lead to liquid–liquid phase separations. The resulting critical points serve as important targets for testing theories. Examples are given for large deviations from corresponding-states behavior caused by specific short-range interactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Evaluation of Four Electrolyte Models for the Prediction of Thermodynamic Properties of Aqueous Electrolyte Solutions

In this work, the performance of four electrolyte models for prediction the osmotic and activity coefficients of different aqueous salt solutions at 298 K, atmospheric pressure and in a wide range of concentrations are evaluated. In two of these models, (electrolyte Non-Random Two-Liquid e-NRTL and Mean Spherical Approximation-Non-Random Two-Liquid MSA-NRTL), association between ions of opposit...

متن کامل

Prediction of Hydrate Formation for the Systems Containing Single and Mixed Electrolyte Solutions

In this work the effect of electrolytes on hydrate formation was investigated. To do so, a new model was used in predicting the hydrate formation conditions in presence of both single and mixed electrolyte solutions. The new model is based on the van der Waals - Platteeuw hydrate equation of state. In order to evaluate the values for the activity of water in electrolyte solutions t...

متن کامل

Modeling the Transport and Volumetric Properties of Solutions Containing Polymer and Electrolyte with New Model

A new theoretical model based on the local composition concept (TNRF-mNRTL model) was proposed to express the short-range contribution of the excess Gibbs energy for the solutions containing polymer and electrolyte. This contribution of interaction along with the long-range contribution of interaction (Pitzer-Debye-Hückel equation), configurational entropy of mixing (Flory-Huggins relation)...

متن کامل

Modeling the Thermodynamic Properties of Solutions Containing Polymer and Electrolyte with New Local Composition Model

A new theory model based on the local composition concept (TNRF-modified NRTL (TNRF-mNRTL) model) was developed to express the short-range contribution of the excess Gibbs energy for the solutions containing polymer and electrolyte. An equation represented the activity coefficient of solvent was derived from the proposed excess Gibbs energy equation. The short-range contribution of interaction ...

متن کامل

Extension of the Dense System Equation of State to Electrolyte Solutions

In this work we have applied the Dense System Equation of State (DSEOS) to electrolyte solutions. We have found that this equation of state can predict the density of electrolyte solutions very accurately. It has been tested for different electrolytes solutions at different temperatures and compositions. A hypothetical binary model has been applied to find the dependencies of parameters of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002